BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

Program Contact: Lynn Byers (lynn.byers@quinnipiac.edu) 203-582-5028

Mechanical engineers are employed in the research, design, development and manufacturing of a broad range of tools, engines, machines and other mechanical devices and components. Through exposure to the University Curriculum, foundational coursework in science, mathematics, major field courses, and extracurricular activities, students graduating with a BS in Mechanical Engineering achieve intellectual proficiencies in critical thinking and reasoning, scientific literacy, quantitative reasoning, information fluency, creative thinking and visual literacy. They are prepared to enter the profession or to pursue graduate studies with a solid foundation in the breadth of mechanical engineering. They also achieve interpersonal proficiencies in written and oral communication, responsible citizenship, diversity awareness and sensitivity and social intelligence.

The BS in Mechanical Engineering program requires a minimum of 122 credits for degree completion.

Within the policies of the School of Computing & Engineering, the Mechanical Engineering program enforces credit limits during the academic terms. Exceeding 18 credits in the Fall or Spring semester, 4 credits in the January term, or 10 credits in each Summer term requires the approval of the dean's office.

Please see footnotes for additional information.

Common Engineering Curriculum

Code University Cu	Title ırriculum (http://catalog.qu.edu/	Credits 49		
academics/university-curriculum/)				
Required pro Curriculum	gram courses for the University			
EC 111	Principles of Microeconomics			
MER 110	3D Solid Modeling and Printing for Innovators ¹			
Foundational	Courses for Mechanical Engineering			
Computer Sc	ience Course			
CSC 105	Computing: Multidisciplinary Approach	3		
or CSC 10	6 Introduction to Programming for Engineers			
	ience Requirement (30 total credits rogram and university curriculum)			
MA 151	Calculus I ²			
MA 153	Calculus II: Part A	2		
MA 154	Calculus II: Part B	2		
MA 251	Calculus III	4		
MA 265	Matrix Algebra and Differential Equations	4		
MA 285	Applied Statistics ²			
CHE 110 & 110L	General Chemistry I and General Chemistry I Lab ²			
PHY 121	University Physics ²			
PHY 122	University Physics II ²			

ENR 210	Engineering Economics and Project Management	3
ENR 395	Professional Development Seminar	1
Mechanical E	Engineering Courses	
MER 210	Statics	3
MER 240	Introduction to Mechanical Engineering Design	1
MER 220 & 220L	Mechanics of Materials and Mechanics of Materials Lab	4
MER 221	Dynamics	3
MER 230 & 230L	Engineering Materials and Engineering Materials Lab	4
MER 250	Computer Aided Design	3
MER 310	Fluid Mechanics	3
MER 320	Thermodynamics	3
MER 330 & 330L	Introduction to Circuits and Introduction to Circuits Lab	4
MER 340 & 340L	Manufacturing/Machine Component Design and Manufacturing/Machine Component Design Lab	4
MER 350	Mechanical Engineering Design	3
MER 360	Heat Transfer	3
MER 470 & 470L	Dynamic Modeling and Control and Dynamic Modeling and Controls Lab	4
MER 490	Engineering Professional Experience	0
MER 498	ME Major Design Experience ³	3
Directed Stud		9
Select one of	f the following options:	
Three tech	nnical electives (any MER elective or or higher CER, IER, SER, MA, BIO, CHE	
Three grad	duate courses toward 3+1 or 4+1 ME/	
_	duate courses toward 4+1 ME/ n Cybersecurity	
Three elec	ctives used toward completion of a	
Other opti director	ons as approved by the ME program	
Total Credits		122

- ¹ Students may substitute ENR 110 and MER 111
- ² Course is required for the Engineering program. The credits are accounted for in the University Curriculum.
- $^{\rm 3}\,$ Course is defined as the Integrative Capstone.

Course plans are subject to change. Course availability, potential transfer credits, and course prerequisite completion may influence the final course schedule for each program.

For students who begin their program taking MA 140, the first 4 semesters are slightly different than what is outlined below, but can still achieve the BS in Mechanical Engineering in 122 credits.

Course First Year	Title	Credits
Fall Semester		
CSC 106	Introduction to Drogramming for Engineers	3
	Introduction to Programming for Engineers	
EN 101	Introduction to Academic Reading and Writing (UC Writing 1)	3
FYS 101	First-Year Seminar (UC Foundations Inquiry)	3
MA 151	Calculus I (UC Personal Inquiry 2)	4
MER 110	3D Solid Modeling and Printing for Innovators (UC Personal Inquiry 2)	3
	Credits	16
Spring Semes	ter	
EN 102	Academic Writing and Research (UC Writing 2)	3
MA 153	Calculus II: Part A	2
MA 154	Calculus II: Part B	2
MER 210	Statics	3
PHY 121	University Physics (UC Personal Inquiry 1 Natural Sciences)	4
	Credits	14
Second Year		
Fall Semester		
CHE 110	General Chemistry I	4
& 110L	and General Chemistry I Lab (UC Natural Science with Lab)	
MA 251	Calculus III	4
MER 220	Mechanics of Materials	4
& 220L	and Mechanics of Materials Lab	
MER 250	Computer Aided Design	3
	Credits	15
Spring Semes	ter	
EC 111	Principles of Microeconomics (UC Social Science)	3
ENR 210	Engineering Economics and Project Management	3
MA 265	Matrix Algebra and Differential Equations	4
MA 285	Applied Statistics (UC Math)	3
University Cur	riculum course	3
	Credits	16
Third Year		
Fall Semester		
ENR 395	Professional Development Seminar	1
MER 221	Dynamics	3
MER 310	Fluid Mechanics	3
PHY 122	University Physics II (UC Personal Inquiry 2)	4
University Cur	riculum course	3
	Credits	14
Spring Semes	ter	
MER 240	Introduction to Mechanical Engineering Design	1
MER 320	Thermodynamics	3
MER 330 & 330L	Introduction to Circuits and Introduction to Circuits Lab	4
MER 340	Manufacturing/Machine Component Design	4
& 340L	and Manufacturing/Machine Component Design Lab	

University C	Curriculum course	3
	Credits	15
Fourth Year		
Fall Semest	rer	
MER 230 & 230L	Engineering Materials and Engineering Materials Lab	4
MER 350	Mechanical Engineering Design	3
MER 360	Heat Transfer	3
Technical Elective		3
University Curriculum course		3
MER 490	Engineering Professional Experience	0
	Credits	16
Spring Sem	ester	
MER 470 & 470L	Dynamic Modeling and Control and Dynamic Modeling and Controls Lab	4
MER 498	ME Major Design Experience	3
Technical Elective		3
Technical Elective		3
University Curriculum course		3
	Credits	16
	Total Credits	122

Student Outcomes

Attainment of the following outcomes prepares graduates to enter the professional practice of engineering:

- an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics.
- an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors.
- 3. an ability to communicate effectively with a range of audiences.
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts.
- an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives.
- an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Educational Objectives

Within four to seven years after graduation, mechanical engineering program alumni are expected to:

- 1. Attain multiple positions of responsibility in which they:
 - a. contribute to teams
 - b. manage resources
 - c. solve complex problems
 - d. communicate information

- e. influence decisions
- f. act ethically
- g. balance constraints
- Continue self-development through formal and informal learning opportunities.
- Obtain sustained employment and/or further education in a technical/professional field.
- Develop a capacity to engage independently in meaningful creative endeavors

Admission Requirements: School of Computing & Engineering

The requirements for admission into the undergraduate School of Computing & Engineering programs are the same as those for admission to Quinnipiac University.

Admission to the university is competitive, and applicants are expected to present a strong college prep program in high school. Prospective first-year students are strongly encouraged to file an application as early in the senior year as possible, and arrange to have first quarter grades sent from their high school counselor as soon as they are available.

For detailed admission requirements, including required documents, please visit the **Admissions** page of this catalog.

Seamless Transfer Agreement with Gateway Community College (GCC), Housatonic Community College (HCC) and Norwalk Community College (NCC)

Under this Transfer Agreement, GCC, HCC and NCC graduates will be guaranteed admission into a bachelor's degree program with third year (junior) status at Quinnipiac University on the condition that they:

- Graduate with an associate in arts, an associate in science in business, College of Technology engineering science and computer science, nursing or an allied health degree with a minimum cumulative GPA of 3.00 (this may be higher in specific programs).
- Satisfy all other Quinnipiac University transfer admission requirements and requirements for intended major.

Quinnipiac University agrees to accept the general education embedded in these associate degree programs in accordance with Quinnipiac preferred choices for general education as meeting all the requirements of its undergraduate general education except for the Integrative Capstone Experience and where courses are encumbered by the major (e.g., General Chemistry for the Disciplinary Inquiry Natural Science requirement for a Biochemistry major).

Suggested Transfer Curriculum for BS in Mechanical Engineering

A minimum of 60 credits is required for transfer into the BS in Mechanical Engineering program. Below is a sample plan of study for the first two years.

Course Title Credits
First Year
Fall Semester

English I

3

Calculus I	
General Chemistry I with Lab	•
Introduction to Engineering	;
Elective	;
Credits	1
Spring Semester	
English II	;
Calculus-Based Physics	
Calculus II	
General Chemistry II with Lab	•
Credits	15
Second Year	
Fall Semester	
Calculus-Based Physics II	
Calculus III - Multivariable	
Elective	:
Elective	;
Credits	14
Spring Semester	
Differential Equations	;
Engineering Statics	:
Microeconomics	:
Engineering Dynamics	
Elective	;
Credits	15

Total Credits