Health Care Essentials: Structure, Policy and

3

DOUBLE-DEGREE BS IN INDUSTRIAL ENGINEERING AND BS IN HEALTH SCIENCE STUDIES

Program Contacts: Susan Norkus (susan.norkus@quinnipiac.edu) 203-582-3382 and Justin Kile (justin.kile@qu.edu) 203-582-3372

Industrial engineering is a diverse discipline that includes healthcare as one of the major focus areas of interest. Health Sciences and Industrial Engineering as a double major enables students to learn concepts and gain experience in both science and engineering of health systems. The graduates of the double major are not only expected to grow in knowledge in health systems but also to become strong members of the health system societies. They would be able to apply their health systems engineering knowledge along with the health science knowledge for a better-working health system.

Industrial engineers are employed throughout various industries, including manufacturing, healthcare and service, to determine the most effective and efficient ways to utilize resources. Industrial engineers are concerned with increasing productivity through the effective management of people, processes and technology. Through exposure to the University Curriculum, foundational coursework in science, mathematics, major field courses and extracurricular activities, students graduating with a BS in Industrial Engineering achieve intellectual proficiencies in critical thinking and reasoning, scientific literacy, quantitative reasoning, information fluency and creative thinking and visual literacy.

A total of 142 credits is required for completion of the double-degree.

Course	Title	Credits		
First Year				
Fall Semester				
BIO 101 & 101L	General Biology I and General Biology I Lab	4		
EN 101	Introduction to Academic Reading and Writing	3		
ENR 110	The World of an Engineer	3		
FYS 101	First-Year Seminar	3		
MA 151	Calculus I	4		
	Credits	17		
Spring Semester				
MA 153	Calculus II: Part A	2		
MA 154	Calculus II: Part B	2		
EN 102	Academic Writing and Research	3		
BIO 102 & 102L	General Biology II and General Biology Lab II	4		
HSC 202	Medical Terminology	2		
MA 285	Applied Statistics	3		
	Credits	16		
Summer Semester				
UC Elective		3		
	Credits	3		

Second Year

Fall Semester

HSC 220

	Professionalism	
CHE 110	General Chemistry I	4
& 110L	and General Chemistry I Lab	
IER 220	Production Systems (MER 225)	3
IER 240	Physical Human Factors and the Workplace (MER 245)	1
IER 265	Cognitive Human Factors and the Workplace (MER 265)	2
Science Elect	ive	3
	Credits	16
Spring Semes	ster	
CSC 106	Introduction to Programming for Engineers	3
CHE 111	General Chemistry II	4
& 111L	and General Chemistry II Lab	
UC Elective		3
IER 280	Data Analytics I	3
IER 450	Health Care Systems Engineering	3
	Credits	16
Summer Sem	ester	
UC Elective		3
	Credits	3
Third Year		
Fall Semester	•	
IER 360	Operations Planning and Control	3
IER 230	Lean Systems Engineering (MER 235)	3
PHY 121	University Physics	4
IER Elective		3
HSC Elective		3
ENR 395	Professional Development Seminar	1
	Credits	17
Spring Semes	ster	
ENR 210	Engineering Economics and Project Management	3
IER 370	Industrial Robotics (MER 375)	3
IER 440	Simulation	3
HSC 221	Introduction to Health Care	2
Science Elect	ive	3
UC Elective		3
	Credits	17
Summer Sem	ester	
UC Elective		3
	Credits	3
Fourth Year		
Fall Semester		
IER 310	Operations Research I (MER 315)	3
IER 375	Statistical Process Control	3
IER 491	Capstone Project I	3
HSC Elective		3
Science Elect	ive	3
		· ·

Science Elective		3	
	Credits	18	
Spring Semester			
IER 498	Capstone Project II	3	
IER 410	Designing and Managing the Supply Chain	3	
IER 490	Engineering Professional Experience	1	
ENR 410	School of Computing and Engineering Integrative Capstone	3	
Science Elective		3	
Science Elective		3	
	Credits	16	
	Total Credits	142	

NOTEmistry courses and additional math courses depend on intended professional goal or career plan and math placement score.

Student Learning Outcomes: Health Science Studies

Upon completion of the Health Science Studies program, students will demonstrate the following competencies:

- Scientific Knowledge: Demonstrate proficiency in understanding and explaining fundamental scientific principles in the disciplines of biology, chemistry and physics.
- Interprofessional Skills: Effectively communicate information across the medical professions using advanced medical vocabulary.
- Teamwork: Apply an advanced understanding of the interprofessional nature of healthcare.
- Health Systems: Develop an advanced knowledge of the U.S. healthcare system and effectively describe challenges/issues that affect it
- Evidence Informed Practice: Critically evaluate biomedical information and sources to confirm validity and reliability.
- 6. **Responsible Citizen:** Evaluate the social, moral and ethical implications of scientific discoveries on medical practice.

Student Learning Outcomes: Industrial Engineering

Attainment of the following outcomes prepares graduates to enter the professional practice of engineering:

- Ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics.
- Ability to apply engineering design to produce solutions that
 meet specified needs with consideration of public health, safety
 and welfare, as well as global, cultural, social, environmental and
 economic factors.
- 3. Ability to communicate effectively with a range of audiences.
- Ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts.
- Ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives.

- Ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- Ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Admission Requirements

Admission into the Double-Degree BS in Industrial Engineering and BS in Health Science Studies program is dependent on the applicant's potential to pursue a university program and on past academic performance. The high school student applying for admission into the program should have a strong background in mathematics and the biological sciences. To remain in good standing within the program, the student must maintain a science GPA of 2.50. First-year biology (8 credits) must be successfully completed, at the latest, by the end of a student's sophomore year.

Transfer Students from within Quinnipiac University

Students currently attending Quinnipiac in another program may be accepted into the program based upon a review of qualification by the program director. Students with a science GPA of 2.50 minimum may apply upon completion of at least one semester at Quinnipiac. Students transferring in as a junior (i.e., 57 credits or more) must have completed the general biology requirements, specifically, the equivalent of 8 credits of Quinnipiac's BIO 101 & BIO 102, or BIO 150 & BIO 151 or BIO 211 & BIO 212, prior to entry into the upper-class component of the program.

Transfer Students from Other Colleges and Universities

Transfer students from other colleges and universities may be accepted into the program. These students must meet the program's performance standards and course requirements. For all transfer students, a minimum GPA of 2.67 is required. These students must have earned at least 8 credits of biology if entering their junior or senior year (i.e., having earned 57 credits or more), and performance standards of the program (science GPA minimum 2.50).